Integrating Opponent Models with Monte-Carlo Tree Search in Poker
نویسندگان
چکیده
In this paper we apply a Monte-Carlo Tree Search implementation that is boosted with domain knowledge to the game of poker. More specifically, we integrate an opponent model in the Monte-Carlo Tree Search algorithm to produce a strong poker playing program. Opponent models allow the search algorithm to focus on relevant parts of the game-tree. We use an opponent modelling approach that starts from a (learned) prior, i.e., general expectations about opponent behavior, and then learns a relational regression tree-function that adapts these priors to specific opponents. Our modelling approach can generate detailed game features or relations on-the-fly. Additionally, using a prior we can already make reasonable predictions even when limited experience is available for a particular player. We show that Monte-Carlo Tree Search with integrated opponent models performs well against stateofthe-art poker programs.
منابع مشابه
Monte-Carlo Tree Search in Poker Using Expected Reward Distributions
We investigate the use of Monte-Carlo Tree Search (MCTS) within the field of computer Poker, more specifically No-Limit Texas Hold’em. The hidden information in Poker results in so called miximax game trees where opponent decision nodes have to be modeled as chance nodes. The probability distribution in these nodes is modeled by an opponent model that predicts the actions of the opponents. We p...
متن کاملGuided Monte Carlo Tree Search for Planning in Learned Environments
Monte Carlo tree search (MCTS) is a sampling and simulation based technique for searching in large search spaces containing both decision nodes and probabilistic events. This technique has recently become popular due to its successful application to games, e.g. Poker Van den Broeck et al. (2009) and Go Coulom (2006); Chaslot et al. (2006); Gelly and Silver (2012)). Such games have known rules a...
متن کاملAn Exploitative Monte-Carlo Poker Agent
We describe the poker agent AKI-REALBOT which participated in the 6-player Limit Competition of the third Annual AAAI Computer Poker Challenge in 2008. It finished in second place, its performance being mostly due to its superior ability to exploit weaker bots. This paper describes the architecture of the program and the Monte-Carlo decision tree-based decision engine that was used to make the ...
متن کاملSmooth UCT Search in Computer Poker
Self-play Monte Carlo Tree Search (MCTS) has been successful in many perfect-information twoplayer games. Although these methods have been extended to imperfect-information games, so far they have not achieved the same level of practical success or theoretical convergence guarantees as competing methods. In this paper we introduce Smooth UCT, a variant of the established Upper Confidence Bounds...
متن کاملBeeMo, a Monte Carlo Simulation Agent for Playing Parameterized Poker Squares
We investigated Parameterized Poker Squares to approximate an optimal game playing agent. We organized our inquiry along three dimensions: partial hand representation, search algorithms, and partial hand utility learning. For each dimension we implemented and evaluated several designs, among which we selected the best strategies to use for BeeMo, our final product. BeeMo uses a parallel flat Mo...
متن کامل